Octave C.:: Classes

Edition 1.0 for Octave version 2.0.5
September 1993

John W. Eaton




Copyright © 1996, 1997 John W. Eaton.

This is the first edition of the documentation for Octave’s C++ classes, and is consistent
with version 2.0.5 of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.



Chapter 1: Acknowledgements 1

1 Acknowledgements

Contributors to Octave

In addition to John W. Eaton, several people have written parts of liboctave. (This has
been removed because it is the same as what is in the Octave manual.)



GNU GENERAL PUBLIC LICENSE 2

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.



GNU GENERAL PUBLIC LICENSE 3

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions



GNU GENERAL PUBLIC LICENSE 4

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,



GNU GENERAL PUBLIC LICENSE 5

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a



GNU GENERAL PUBLIC LICENSE 6

version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS



GNU GENERAL PUBLIC LICENSE 7

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.J

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.|]
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show ¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice



GNU GENERAL PUBLIC LICENSE 8

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.



Chapter 2: A Brief Introduction to Octave 9

2 A Brief Introduction to Octave

This manual documents how to run, install and port Octave’s C++ classes, and how to
report bugs.



Chapter 3: Arrays

3 Arrays

3.1 Constructors and Assignment

Array<T>::Array (void) Constructor
Create an array with no elements.

Array<T>::Array (int n [, const T &val]) Constructor
Create an array with n elements. If the optional argument val is supplied, the
elements are initialized to val; otherwise, they are left uninitialized. If n is less
than zero, the current error handler is invoked (see Chapter 13 [Error Handling],
page 45).

Array<T>::Array (const Array<T> &a) Constructor
Create a copy of the Array<T> object a. Memory for the Array<T> class is
managed using a reference counting scheme, so the cost of this operation is
independent of the size of the array.

Array<T>& Array<T>::operator = (const Array<T> &a) Operator
Assignment operator. Memory for the Array<T> class is managed using a
reference counting scheme, so the cost of this operation is independent of the
size of the array.

int Array<T>::capacity (void) const Method
int Array<T>::length (void) const Method
Return the length of the array.

T& Array<T>::elem (int n) Method
T& Array<T>::checkelem (int n) Method
T& Array<T>::operator () (int n) Method

If n is within the bounds of the array, return a reference to the element indexed
by n; otherwise, the current error handler is invoked (see Chapter 13 [Error
Handling], page 45).

T Array<T>::elem (int n) const Method
T Array<T>::checkelem (int n) const Method
T Array<T>::operator () (int n) const Method

If nis within the bounds of the array, return the value indexed by n; otherwise,
call the current error handler. See Chapter 13 [Error Handling], page 45.

T& Array<T>::xelem (int n) Method

T Array<T>::xelem (int n) const Method
Return a reference to, or the value of, the element indexed by n. These methods
never perform bounds checking.



Chapter 3: Arrays 11

void Array<T>:resize (int n [, const T &val]) Method
Change the size of the array to be n elements. All elements are unchanged,
except that if n is greater than the current size and the optional argument
val is provided, the additional elements are initialized to val; otherwise, any
additional elements are left uninitialized. In the current implementation, if n is
less than the current size, the length is updated but no memory is released.

const T* Array<T>::data (void) const Method

Array2 (void)

Array2 (int n, int m)

Array2 (int n, int m, const T &val)
Array2 (const Array2<T> &a)
Array2 (const DiagArray<T> &a)

Array2<T>& operator = (const Array2<T> &a)

int diml (void) const
int rows (void) const

int dim2 (void) const
int cols (void) const
int columns (void) const

T& elem (int i, int j)
T& checkelem (int i, int j)
T& operator () (int i, int j)

void resize (int n, int m)
void resize (int n, int m, const T &val)

Array3 (void)

Array3 (int n, int m, int k)

Array3 (int n, int m, int k, const T &val)
Array3 (const Array3<T> &a)

Array3<T>& operator = (const Array3<T> &a)

int diml (void) const
int dim2 (void) const
int dim3 (void) const

T& elem (int i, int j, int k)
T& checkelem (int i, int j, int k)
T& operator () (int i, int j, int k)

void resize (int n, int m, int k)
void resize (int n, int m, int k, const T &val)



Chapter 3: Arrays 12

(void)

(int n)

(int n, const T &val)

(int r, int c)

(int r, int c, const T &val)
(const Array<T> &a)
(const DiagArray<T> &a)

DiagArray<T>& operator = (const DiagArray<T> &a)

int diml (void) const
int rows (void) const

int dim2 (void) const
int cols (void) const
int columns (void) const

T& elem (int r, int c)
T& checkelem (int r, int ¢)
T& operator () (int r, int c)

void resize (int n, int m)
void resize (int n, int m, const T &val)

The real and complex ColumnVector and RowVector classes all have the following func-
tions. These will eventually be part of an MArray<T> class, derived from the Array<T> class.
Then the ColumnVector and RowVector classes will be derived from the MArray<T> class.

Element by element vector by scalar ops.
RowVector operator + (const RowVector &a, const double &s)
RowVector operator - (const RowVector &a, const double &s)

RowVector operator * (const RowVector &a, const double &s)
RowVector operator / (const RowVector &a, const double &s)

Element by element scalar by vector ops.
RowVector operator + (const double &s, const RowVector &a)
RowVector operator - (const double &s, const RowVector &a)

RowVector operator * (const double &s, const RowVector &a)
RowVector operator / (const double &s, const RowVector &a)

Element by element vector by vector ops.
RowVector operator + (const RowVector &a, const RowVector &b)
RowVector operator - (const RowVector &a, const RowVector &b)

RowVector product (const RowVector &a, const RowVector &b)
RowVector quotient (const RowVector &a, const RowVector &bh)

Unary MArray ops.

RowVector operator - (const RowVector &a)



Chapter 3: Arrays 13

The Matrix classes share the following functions. These will eventually be part of an
MArray2<T> class, derived from the Array2<T> class. Then the Matrix class will be derived
from the MArray<T> class.

Element by element matrix by scalar ops.
Matrix operator + (const Matrix &a, const double &s)
Matrix operator - (const Matrix &a, const double &s)

Matrix operator * (const Matrix &a, const double &s)
Matrix operator / (const Matrix &a, const double &s)

Element by element scalar by matrix ops.
Matrix operator + (const double &s, const Matrix &a)
Matrix operator - (const double &s, const Matrix &a)

Matrix operator * (const double &s, const Matrix &a)
Matrix operator / (const double &s, const Matrix &a)

Element by element matrix by matrix ops.
Matrix operator + (const Matrix &a, const Matrix &b)
Matrix operator - (const Matrix &a, const Matrix &b)

Matrix product (const Matrix &a, const Matrix &b)
Matrix quotient (const Matrix &a, const Matrix &b)

Unary matrix ops.

Matrix operator - (const Matrix &a)

The DiagMatrix classes share the following functions. These will eventually be part of
an MDiagArray<T> class, derived from the DiagArray<T> class. Then the DiagMatrix class
will be derived from the MDiagArray<T> class.

Element by element MDiagArray by scalar ops.
DiagMatrix operator * (const DiagMatrix &a, const double &s)
DiagMatrix operator / (const DiagMatrix &a, const double &s)

Element by element scalar by MDiagArray ops.

DiagMatrix operator * (const double &s, const DiagMatrix &a)

Element by element MDiagArray by MDiagArray ops.

DiagMatrix operator + (const DiagMatrix &a, const DiagMatrix &b)
DiagMatrix operator - (const DiagMatrix &a, const DiagMatrix &b)
DiagMatrix product (const DiagMatrix &a, const DiagMatrix &b)

Unary MDiagArray ops.

DiagMatrix operator - (const DiagMatrix &a)



Chapter 4: Matrix and Vector Operations 14

4 Matrix and Vector Operations

(void)

(int r, int c)

(int r, int c, double val)
(const Array2<double> &a)
(const Matrix &a)

(const DiagArray<double> &a)
(const DiagMatrix &a)

Matrix& operator = (const Matrix &a)

int operator == (const Matrix &a) const
int operator !'=(const Matrix &a) const

Matrix& insert (const Matrix &a, int r, int c)
Matrix& insert (const RowVector &a, int r, int c)
Matrix& insert (const ColumnVector &a, int r, int c)
Matrix& insert (const DiagMatrix &a, int r, int c)

Matrix& fill (double val)
Matrix& fill (double val, int r1, int c1, int r2, int c2)

Matrix append (const Matrix &a) const
Matrix append (const RowVector &a) const
Matrix append (const ColumnVector &a) const
Matrix append (const DiagMatrix &a) const

Matrix stack (const Matrix &a) const
Matrix stack (const RowVector &a) const
Matrix stack (const ColumnVector &a) const
Matrix stack (const DiagMatrix &a) const

Matrix transpose (void) const
Matrix extract (int ri, int c1, int r2, int c2) const

RowVector row (int i) const
RowVector row (char *s) const

ColumnVector column (int i) const
ColumnVector column (char *s) const

Matrix inverse (void) const
Matrix inverse (int &info) const
Matrix inverse (int &info, double &rcond) const

ComplexMatrix fourier (void) const
ComplexMatrix ifourier (void) const

DET determinant (void) const
DET determinant (int &info) const
DET determinant (int &info, double &rcond) const



Chapter 4: Matrix and Vector Operations 15

Matrix solve (const Matrix &b) const
Matrix solve (const Matrix &b, int &info) const
Matrix solve (const Matrix &b, int &info, double &rcond) const

ComplexMatrix solve (const ComplexMatrix &h) const

ComplexMatrix solve (const ComplexMatrix &b, int &info) const

ComplexMatrix solve (const ComplexMatrix &b, int &info, double
&rcond) const

ColumnVector solve (const ColumnVector &b) const

ColumnVector solve (const ColumnVector &b, int &info) const

ColumnVector solve (const ColumnVector &b, int &info, double &rcond)
const

ComplexColumnVector solve (const ComplexColumnVector &b) const

ComplexColumnVector solve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector solve (const ComplexColumnVector &b, int
&info, double &rcond) const

Matrix lssolve (const Matrix &b) const
Matrix lssolve (const Matrix &b, int &info) const
Matrix lssolve (const Matrix &b, int &info, int &rank) const

ComplexMatrix lssolve (const ComplexMatrix &b) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank)
const

ColumnVector Issolve (const ColumnVector &b) const

ColumnVector Issolve (const ColumnVector &b, int &info) const

ColumnVector Issolve (const ColumnVector &b, int &info, int &rank)
const

ComplexColumnVector lssolve (const ComplexColumnVector &h) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info, int &rank) const

Matrix& operator += (const Matrix &a)
Matrix& operator -= (const Matrix &a)

Matrix& operator += (const DiagMatrix &a)
Matrix& operator -= (const DiagMatrix &a)

Matrix operator ! (void) const

ComplexMatrix operator + (const Matrix &a, const Complex &s)
ComplexMatrix operator - (const Matrix &a, const Complex &s)
ComplexMatrix operator * (const Matrix &a, const Complex &s)
ComplexMatrix operator / (const Matrix &a, const Complex &s)



Chapter 4: Matrix and Vector Operations

ComplexMatrix operator + (const Complex &s, const Matrix &a)
ComplexMatrix operator - (const Complex &s, const Matrix &a)
ComplexMatrix operator * (const Complex &s, const Matrix &a)
ComplexMatrix operator / (const Complex &s, const Matrix &a)

ColumnVector operator * (const Matrix &a, const ColumnVector &b)
ComplexColumnVector operator * (const Matrix &a, const
ComplexColumnVector &b)

Matrix operator + (const Matrix &a, const DiagMatrix &b)
Matrix operator - (const Matrix &a, const DiagMatrix &b)
Matrix operator * (const Matrix &a, const DiagMatrix &b)

ComplexMatrix operator + (const Matrix &a, const
ComplexDiagMatrix &b)

ComplexMatrix operator - (const Matrix &a, const
ComplexDiagMatrix &b)

ComplexMatrix operator * (const Matrix &a, const
ComplexDiagMatrix &b)

Matrix operator * (const Matrix &a, const Matrix &b)
ComplexMatrix operator * (const Matrix &a, const ComplexMatrix

&b)

ComplexMatrix operator + (const Matrix &a, const ComplexMatrix
&b)

ComplexMatrix operator - (const Matrix &a, const ComplexMatrix
&b)

ComplexMatrix product (const Matrix &a, const ComplexMatrix &b)
ComplexMatrix quotient (const Matrix &a, const ComplexMatrix &b)

Matrix map (d_d_Mapper f, const Matrix &a)
void map (d_d_Mapper f)

Matrix all (void) const
Matrix any (void) const

Matrix cumprod (void) const
Matrix cumsum (void) const
Matrix prod (void) const
Matrix sum (void) const
Matrix sumsq (void) const

ColumnVector diag (void) const
ColumnVector diag (int k) const

ColumnVector row_min (void) const
ColumnVector row_min_loc (void) const

ColumnVector row_max (void) const
ColumnVector row_max_loc (void) const

RowVector column_min (void) const
RowVector column_min_loc (void) const



Chapter 4: Matrix and Vector Operations

RowVector column_max (void) const
RowVector column_max_loc (void) const

ostream& operator << (ostream &os, const Matrix &a)
istream& operator >> (istream &is, Matrix &a)

(void)

(int n)

(int n, double val)
(const Array<double> &a)
(const ColumnVector &a)

ColumnVector& operator = (const ColumnVector &a)

int operator == (const ColumnVector &a) const
int operator !=(const ColumnVector &a) const

ColumnVector& insert (const ColumnVector &a, int r)

ColumnVector& fill (double val)
ColumnVector& fill (double val, int r1, int r2)

ColumnVector stack (const ColumnVector &a) const
RowVector transpose (void) const
ColumnVector extract (int r1, int r2) const

ColumnVector& operator += (const ColumnVector &a)
ColumnVector& operator -= (const ColumnVector &a)

ComplexColumnVector operator + (const ColumnVector &a, const
Complex &s)

ComplexColumnVector operator - (const ColumnVector &a, const
Complex &s)

ComplexColumnVector operator * (const ColumnVector &a, const
Complex &s)

ComplexColumnVector operator / (const ColumnVector &a, const
Complex &s)

ComplexColumnVector operator + (const Complex &s, const
ColumnVector &a)

ComplexColumnVector operator - (const Complex &s, const
ColumnVector &a)

ComplexColumnVector operator * (const Complex &s, const
ColumnVector &a)

ComplexColumnVector operator / (const Complex &s, const
ColumnVector &a)

Matrix operator * (const ColumnVector &a, const RowVector &a)

ComplexMatrix operator * (const ColumnVector &a, const
ComplexRowVector &b)

ComplexColumnVector operator + (const ComplexColumnVector &a,
const ComplexColumnVector &b)

17



Chapter 4: Matrix and Vector Operations 18

ComplexColumnVector operator - (const ComplexColumnVector &a,
const ComplexColumnVector &b)

ComplexColumnVector product (const ComplexColumnVector &a,
const ComplexColumnVector &b)

ComplexColumnVector quotient (const ComplexColumnVector &a,
const ComplexColumnVector &b)

ColumnVector map (d_d_Mapper f, const ColumnVector &a)
void map (d_d_Mapper f)

double min (void) const
double max (void) const

ostream& operator << (ostream &os, const ColumnVector &a)

(void)

(int n)

(int n, double val)
(const Array<double> &a)
(const RowVector &a)

RowVector& operator = (const RowVector &a)

int operator == (const RowVector &a) const
int operator !=(const RowVector &a) const

RowVector& insert (const RowVector &a, int c)

RowVector& fill (double val)
RowVector& fill (double val, int ci1, int c2)

RowVector append (const RowVector &a) const
ColumnVector transpose (void) const
RowVector extract (int cl, int c2) const

RowVector& operator +=(const RowVector &a)
RowVector& operator -= (const RowVector &a)

ComplexRowVector operator + (const RowVector &a, const Complex

&s)

ComplexRowVector operator - (const RowVector &a, const Complex
&s)

ComplexRowVector operator * (const RowVector &a, const Complex
&s)

ComplexRowVector operator / (const RowVector &a, const Complex
&s)



Chapter 4: Matrix and Vector Operations 19

ComplexRowVector operator + (const Complex &s, const RowVector
&a)

ComplexRowVector operator - (const Complex &s, const RowVector
&a)

ComplexRowVector operator * (const Complex &s, const RowVector
&a)

ComplexRowVector operator / (const Complex &s, const RowVector
&a)

double operator * (const RowVector &a, ColumnVector &b)

Complex operator * (const RowVector &a, const ComplexColumnVector
&b)

RowVector operator * (const RowVector &a, const Matrix &b)

ComplexRowVector operator * (const RowVector &a, const
ComplexMatrix &b)

ComplexRowVector operator + (const RowVector &a, const
ComplexRowVector &b)

ComplexRowVector operator - (const RowVector &a, const
ComplexRowVector &b)

ComplexRowVector product (const RowVector &a, const
ComplexRowVector &b)

ComplexRowVector quotient (const RowVector &a, const
ComplexRowVector &b)

RowVector map (d_d_Mapper f, const RowVector &a)
void map (d_d_Mapper f)

double min (void) const
double max (void) const

ostream& operator << (ostream &os, const RowVector &a)

(void)

(int n)

(int n, double val)

(int r, int c)

(int r, int c, double val)
(const RowVector &a)

(const ColumnVector &a)
(const DiagArray<double> &a)
(const DiagMatrix &a)

DiagMatrix& operator = (const DiagMatrix &a)

int operator == (const DiagMatrix &a) const
int operator !=(const DiagMatrix &a) const



Chapter 4: Matrix and Vector Operations 20

DiagMatrix& fill (double val)

DiagMatrix& fill (double val, int beg, int end)
DiagMatrix& fill (const ColumnVector &a)
DiagMatrix& fill (const RowVector &a)
DiagMatrix& fill (const ColumnVector &a, int beg)
DiagMatrix& fill (const RowVector &a, int heg)

DiagMatrix transpose (void) const
Matrix extract (int ri, int c1, int r2, int c2) const

RowVector row (int i) const
RowVector row (char *s) const

ColumnVector column (int i) const
ColumnVector column (char *s) const

DiagMatrix inverse (void) const
DiagMatrix inverse (int &info) const

DiagMatrix& operator += (const DiagMatrix &a)
DiagMatrix& operator -= (const DiagMatrix &a)

Matrix operator + (const DiagMatrix &a, double s)
Matrix operator - (const DiagMatrix &a, double s)

ComplexMatrix operator + (const DiagMatrix &a, const Complex &s)
ComplexMatrix operator - (const DiagMatrix &a, const Complex &s)

ComplexDiagMatrix operator * (const DiagMatrix &a, const Complex
&s)

ComplexDiagMatrix operator / (const DiagMatrix &a, const Complex
&s)

Matrix operator + (double s, const DiagMatrix &a)
Matrix operator - (double s, const DiagMatrix &a)

ComplexMatrix operator + (const Complex &s, const DiagMatrix &a)
ComplexMatrix operator - (const Complex &s, const DiagMatrix &a)

ComplexDiagMatrix operator * (const Complex &s, const DiagMatrix
&a)

ColumnVector operator * (const DiagMatrix &a, const ColumnVector
&b)

ComplexColumnVector operator * (const DiagMatrix &a, const
ComplexColumnVector &b)

ComplexDiagMatrix operator + (const DiagMatrix &a, const
ComplexDiagMatrix &b)

ComplexDiagMatrix operator - (const DiagMatrix &a, const
ComplexDiagMatrix &b)

ComplexDiagMatrix product (const DiagMatrix &a, const
ComplexDiagMatrix &b)



Chapter 4: Matrix and Vector Operations 21

Matrix operator + (const DiagMatrix &a, const Matrix &b)
Matrix operator - (const DiagMatrix &a, const Matrix &b)
Matrix operator * (const DiagMatrix &a, const Matrix &b)

ComplexMatrix operator + (const DiagMatrix &a, const
ComplexMatrix &b)

ComplexMatrix operator - (const DiagMatrix &a, const
ComplexMatrix &b)

ComplexMatrix operator * (const DiagMatrix &a, const
ComplexMatrix &b)

ColumnVector diag (void) const
ColumnVector diag (int k) const

ostream& operator << (ostream &os, const DiagMatrix &a)

(void)

(int r, int c)

(int r, int c, const Complex &val)
(const Matrix &a)

(const Array2<Complex> &a)
(const ComplexMatrix &a)
(const DiagMatrix &a)

(const DiagArray<Complex> &a)
(const ComplexDiagMatrix &a)

ComplexMatrix& operator = (const ComplexMatrix &a)

int operator == (const ComplexMatrix &a) const
int operator !=(const ComplexMatrix &a) const

ComplexMatrix& insert (const Matrix &a, int r, int c)
ComplexMatrix& insert (const RowVector &a, int r, int c)
ComplexMatrix& insert (const ColumnVector &a, int r, int c)
ComplexMatrix& insert (const DiagMatrix &a, int r, int c)

ComplexMatrix& insert (const ComplexMatrix &a, int r, int c)
ComplexMatrix& insert (const ComplexRowVector &a, int r, int c)
ComplexMatrix& insert (const ComplexColumnVector &a, int r, int c)
ComplexMatrix& insert (const ComplexDiagMatrix &a, int r, int c)

ComplexMatrix& fill (double val)

ComplexMatrix& fill (const Complex &val)

ComplexMatrix& fill (double val, int r1, int c1, int r2, int c2)

ComplexMatrix& fill (const Complex &val, int r1, int c1, int r2, int
c2)

ComplexMatrix append (const Matrix &a) const
ComplexMatrix append (const RowVector &a) const
ComplexMatrix append (const ColumnVector &a) const
ComplexMatrix append (const DiagMatrix &a) const



Chapter 4: Matrix and Vector Operations 22

ComplexMatrix append (const ComplexMatrix &a) const
ComplexMatrix append (const ComplexRowVector &a) const
ComplexMatrix append (const ComplexColumnVector &a) const
ComplexMatrix append (const ComplexDiagMatrix &a) const

ComplexMatrix stack (const Matrix &a) const
ComplexMatrix stack (const RowVector &a) const
ComplexMatrix stack (const ColumnVector &a) const
ComplexMatrix stack (const DiagMatrix &a) const

ComplexMatrix stack (const ComplexMatrix &a) const
ComplexMatrix stack (const ComplexRowVector &a) const
ComplexMatrix stack (const ComplexColumnVector &a) const
ComplexMatrix stack (const ComplexDiagMatrix &a) const

ComplexMatrix transpose (void) const

Matrix real (const ComplexMatrix &a)
Matrix imag (const ComplexMatrix &a)
ComplexMatrix conj (const ComplexMatrix &a)

ComplexMatrix extract (int ri, int ci, int r2, int c2) const

ComplexRowVector row (int i) const
ComplexRowVector row (char *s) const

ComplexColumnVector column (int i) const
ComplexColumnVector column (char *s) const

ComplexMatrix inverse (void) const
ComplexMatrix inverse (int &info) const
ComplexMatrix inverse (int &info, double &rcond) const

ComplexMatrix fourier (void) const
ComplexMatrix ifourier (void) const

ComplexDET determinant (void) const
ComplexDET determinant (int &info) const
ComplexDET determinant (int &info, double &rcond) const

ComplexMatrix solve (const Matrix &b) const

ComplexMatrix solve (const Matrix &b, int &info) const

ComplexMatrix solve (const Matrix &b, int &info, double &rcond)
const

ComplexMatrix solve (const ComplexMatrix &h) const

ComplexMatrix solve (const ComplexMatrix &b, int &info) const

ComplexMatrix solve (const ComplexMatrix &b, int &info, double
&rcond) const

ComplexColumnVector solve (const ComplexColumnVector &b) const

ComplexColumnVector solve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector solve (const ComplexColumnVector &b, int
&info, double &rcond) const



Chapter 4: Matrix and Vector Operations 23

ComplexMatrix lssolve (const ComplexMatrix &b) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const

ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank)
const

ComplexColumnVector lssolve (const ComplexColumnVector &h) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info) const

ComplexColumnVector lssolve (const ComplexColumnVector &b, int
&info, int &rank) const

ComplexMatrix& operator += (const DiagMatrix &a)
ComplexMatrix& operator -= (const DiagMatrix &a)

ComplexMatrix& operator += (const ComplexDiagMatrix &a)
ComplexMatrix& operator -= (const ComplexDiagMatrix &a)

ComplexMatrix& operator += (const Matrix &a)
ComplexMatrix& operator -= (const Matrix &a)

ComplexMatrix& operator += (const ComplexMatrix &a)
ComplexMatrix& operator -= (const ComplexMatrix &a)

Matrix operator ! (void) const

ComplexMatrix operator + (const ComplexMatrix &a, double s)
ComplexMatrix operator - (const ComplexMatrix &a, double s)
ComplexMatrix operator * (const ComplexMatrix &a, double s)
ComplexMatrix operator / (const ComplexMatrix &a, double s)

ComplexMatrix operator + (double s, const ComplexMatrix &a)
ComplexMatrix operator - (double s, const ComplexMatrix &a)
ComplexMatrix operator * (double s, const ComplexMatrix &a)
ComplexMatrix operator / (double s, const ComplexMatrix &a)

ComplexColumnVector operator * (const ComplexMatrix &a, const
ColumnVector &b)

ComplexColumnVector operator * (const ComplexMatrix &a, const
ComplexColumnVector &b)

ComplexMatrix operator + (const ComplexMatrix &a, const
DiagMatrix &b)

ComplexMatrix operator - (const ComplexMatrix &a, const
DiagMatrix &b)

ComplexMatrix operator * (const ComplexMatrix &a, const
DiagMatrix &b)

ComplexMatrix operator + (const ComplexMatrix &a, const
ComplexDiagMatrix &b)

ComplexMatrix operator - (const ComplexMatrix &a, const
ComplexDiagMatrix &b)

ComplexMatrix operator * (const ComplexMatrix &a, const
ComplexDiagMatrix &b)



Chapter 4: Matrix and Vector Operations 24

ComplexMatrix operator + (const ComplexMatrix &a, const Matrix

&b)

ComplexMatrix operator - (const ComplexMatrix &a, const Matrix
&b)

ComplexMatrix operator * (const ComplexMatrix &a, const Matrix
&b)

ComplexMatrix operator * (const ComplexMatrix &a, const
ComplexMatrix &b)

ComplexMatrix product (const ComplexMatrix &a, const Matrix &b)
ComplexMatrix quotient (const ComplexMatrix &a, const Matrix &b)

ComplexMatrix map (c_c_Mapper f, const ComplexMatrix &a)
Matrix map (d_c_Mapper f, const ComplexMatrix &a)
void map (c_c_Mapper f)

Matrix all (void) const
Matrix any (void) const

ComplexMatrix cumprod (void) const
ComplexMatrix cumsum (void) const
ComplexMatrix prod (void) const
ComplexMatrix sum (void) const
ComplexMatrix sumsq (void) const

ComplexColumnVector diag (void) const
ComplexColumnVector diag (int k) const

ComplexColumnVector row_min (void) const
ComplexColumnVector row_min_loc (void) const

ComplexColumnVector row_max (void) const
ComplexColumnVector row_max_loc (void) const

ComplexRowVector column_min (void) const
ComplexRowVector column_min_loc (void) const

ComplexRowVector column_max (void) const
ComplexRowVector column_max_loc (void) const

ostream& operator << (ostream &os, const ComplexMatrix &a)
istream& operator >> (istream &is, ComplexMatrix &a)

(void)

(int n)

(int n, const Complex &val)
(const ColumnVector &a)

(const Array<Complex> &a)
(const ComplexColumnVector &a)

ComplexColumnVector& operator = (const ComplexColumnVector &a)

int operator == (const ComplexColumnVector &a) const
int operator !=(const ComplexColumnVector &a) const



Chapter 4: Matrix and Vector Operations 25

ComplexColumnVector& insert (const ColumnVector &a, int r)
ComplexColumnVector& insert (const ComplexColumnVector &a, int r)

ComplexColumnVector& fill (double val)
ComplexColumnVector& fill (const Complex &val)
ComplexColumnVector& fill (double val, int r1, int r2)
ComplexColumnVector& fill (const Complex &val, int r1, int r2)

ComplexColumnVector stack (const ColumnVector &a) const
ComplexColumnVector stack (const ComplexColumnVector &a) const

ComplexRowVector transpose (void) const

ColumnVector real (const ComplexColumnVector &a)
ColumnVector imag (const ComplexColumnVector &a)
ComplexColumnVector conj (const ComplexColumnVector &a)

ComplexColumnVector extract (int ri, int r2) const

ComplexColumnVector& operator += (const ColumnVector &a)
ComplexColumnVector& operator -= (const ColumnVector &a)

ComplexColumnVector& operator += (const ComplexColumnVector &a)
ComplexColumnVector& operator -= (const ComplexColumnVector &a)

ComplexColumnVector operator + (const ComplexColumnVector &a,
double s)

ComplexColumnVector operator - (const ComplexColumnVector &a,
double s)

ComplexColumnVector operator * (const ComplexColumnVector &a,
double s)

ComplexColumnVector operator / (const ComplexColumnVector &a,
double s)

ComplexColumnVector operator + (double s, const
ComplexColumnVector &a)
ComplexColumnVector operator - (double s, const
ComplexColumnVector &a)
ComplexColumnVector operator * (double s, const
ComplexColumnVector &a)
ComplexColumnVector operator / (double s, const
ComplexColumnVector &a)

ComplexMatrix operator * (const ComplexColumnVector &a, const
ComplexRowVector &b)

ComplexColumnVector operator + (const ComplexColumnVector &a,
const ColumnVector &b)

ComplexColumnVector operator - (const ComplexColumnVector &a,
const ColumnVector &b)



Chapter 4: Matrix and Vector Operations 26

ComplexColumnVector product (const ComplexColumnVector &a,
const ColumnVector &b)

ComplexColumnVector quotient (const ComplexColumnVector &a,
const ColumnVector &b)

ComplexColumnVector map (c_c_Mapper f, const
ComplexColumnVector &a)

ColumnVector map (d_c_Mapper f, const ComplexColumnVector &a)

void map (c_c_Mapper f)

Complex min (void) const
Complex max (void) const

ostream& operator << (ostream &os, const ComplexColumnVector &a)

(void)

(int n)

(int n, const Complex &val)
(const RowVector &a)

(const Array<Complex> &a)
(const ComplexRowVector &a)

ComplexRowVector& operator = (const ComplexRowVector &a)

int operator == (const ComplexRowVector &a) const
int operator !=(const ComplexRowVector &a) const

ComplexRowVector& insert (const RowVector &a, int c)
ComplexRowVector& insert (const ComplexRowVector &a, int c)

ComplexRowVector& fill (double val)

ComplexRowVector& fill (const Complex &val)
ComplexRowVectorg& fill (double val, int c1, int c2)
ComplexRowVector& fill (const Complex &val, int c1, int c2)

ComplexRowVector append (const RowVector &a) const
ComplexRowVector append (const ComplexRowVector &a) const

ComplexColumnVector transpose (void) const

RowVector real (const ComplexRowVector &a)
RowVector imag (const ComplexRowVector &a)
ComplexRowVector conj (const ComplexRowVector &a)

ComplexRowVector extract (int c1, int c2) const

ComplexRowVector& operator += (const RowVector &a)
ComplexRowVector& operator -= (const RowVector &a)

ComplexRowVector& operator += (const ComplexRowVector &a)
ComplexRowVector& operator -= (const ComplexRowVector &a)



Chapter 4: Matrix and Vector Operations 27

ComplexRowVector operator + (const ComplexRowVector &a, double s)
ComplexRowVector operator - (const ComplexRowVector &a, double s)
ComplexRowVector operator * (const ComplexRowVector &a, double s)

ComplexRowVector operator / (const ComplexRowVector &a, double s)

ComplexRowVector operator + (double s, const ComplexRowVector &a)
ComplexRowVector operator - (double s, const ComplexRowVector &a)
ComplexRowVector operator * (double s, const ComplexRowVector &a)
ComplexRowVector operator / (double s, const ComplexRowVector &a)

Complex operator * (const ComplexRowVector &a, const ColumnVector
&b)

Complex operator * (const ComplexRowVector &a, const
ComplexColumnVector &b)

ComplexRowVector operator * (const ComplexRowVector &a, const
ComplexMatrix &b)

ComplexRowVector operator + (const ComplexRowVector &a, const
RowVector &b)

ComplexRowVector operator - (const ComplexRowVector &a, const
RowVector &b)

ComplexRowVector product (const ComplexRowVector &a, const
RowVector &b)

ComplexRowVector quotient (const ComplexRowVector &a, const
RowVector &b)

ComplexRowVector map (c_c_Mapper f, const ComplexRowVector &a)
RowVector map (d_c_Mapper f, const ComplexRowVector &a)
void map (c_c_Mapper f)

Complex min (void) const
Complex max (void) const

ostream& operator << (ostream &os, const ComplexRowVector &a)



Chapter 4: Matrix and Vector Operations 28

(void)

(int n)

(int n, const Complex &val)

(int r, int c)

(int r, int c, const Complex &val)
(const RowVector &a)

(const ComplexRowVector &a)
(const ColumnVector &a)

(const ComplexColumnVector &a)
(const DiagMatrix &a)

(const DiagArray<Complex> &a)
(const ComplexDiagMatrix &a)

ComplexDiagMatrix& operator = (const ComplexDiagMatrix &a)

int operator == (const ComplexDiagMatrix &a) const
int operator !=(const ComplexDiagMatrix &a) const

ComplexDiagMatrix& fill (double val)

ComplexDiagMatrix& fill (const Complex &val)
ComplexDiagMatrix& fill (double val, int beg, int end)
ComplexDiagMatrix& fill (const Complex &val, int beg, int end)
ComplexDiagMatrix& fill (const ColumnVector &a)
ComplexDiagMatrix& fill (const ComplexColumnVector &a)
ComplexDiagMatrix& fill (const RowVector &a)
ComplexDiagMatrix& fill (const ComplexRowVector &a)
ComplexDiagMatrix& fill (const ColumnVector &a, int heg)
ComplexDiagMatrix& fill (const ComplexColumnVector &a, int beg)
ComplexDiagMatrix& fill (const RowVector &a, int beg)
ComplexDiagMatrix& fill (const ComplexRowVector &a, int heg)

ComplexDiagMatrix transpose (void) const

DiagMatrix real (const ComplexDiagMatrix &a)
DiagMatrix imag (const ComplexDiagMatrix &a)
ComplexDiagMatrix conj (const ComplexDiagMatrix &a)

ComplexMatrix extract (int ri, int ci, int r2, int c2) const

ComplexRowVector row (int i) const
ComplexRowVector row (char *s) const

ComplexColumnVector column (int i) const
ComplexColumnVector column (char *s) const

ComplexDiagMatrix inverse (int &info) const
ComplexDiagMatrix inverse (void) const

ComplexDiagMatrix& operator += (const DiagMatrix &a)
ComplexDiagMatrix& operator -= (const DiagMatrix &a)

ComplexDiagMatrix& operator += (const ComplexDiagMatrix &a)
ComplexDiagMatrix& operator -= (const ComplexDiagMatrix &a)



Chapter 4: Matrix and Vector Operations

ComplexMatrix operator + (const ComplexDiagMatrix &a, double s)
ComplexMatrix operator - (const ComplexDiagMatrix &a, double s)

ComplexMatrix operator + (const ComplexDiagMatrix &a, const
Complex &s)

ComplexMatrix operator - (const ComplexDiagMatrix &a, const
Complex &s)

ComplexDiagMatrix operator * (const ComplexDiagMatrix &a, double
5)

ComplexDiagMatrix operator / (const ComplexDiagMatrix &a, double
5)

ComplexMatrix operator + (double s, const ComplexDiagMatrix &a)

ComplexMatrix operator - (double s, const ComplexDiagMatrix &a)

ComplexMatrix operator + (const Complex &s, const
ComplexDiagMatrix &a)

ComplexMatrix operator - (const Complex &s, const
ComplexDiagMatrix &a)

ComplexDiagMatrix operator * (double s, const ComplexDiagMatrix
&a)
ComplexColumnVector operator * (const ComplexDiagMatrix &a,

const ColumnVector &b)

ComplexColumnVector operator * (const ComplexDiagMatrix &a,
const ComplexColumnVector &b)

ComplexDiagMatrix operator + (const ComplexDiagMatrix &a, const
DiagMatrix &b)

ComplexDiagMatrix operator - (const ComplexDiagMatrix &a, const
DiagMatrix &b)

ComplexDiagMatrix product (const ComplexDiagMatrix &a, const
DiagMatrix &b)

ComplexMatrix operator + (const ComplexDiagMatrix &a, const

Matrix &b)

ComplexMatrix operator - (const ComplexDiagMatrix &a, const
Matrix &b)

ComplexMatrix operator * (const ComplexDiagMatrix &a, const
Matrix &b)

ComplexMatrix operator + (const ComplexDiagMatrix &a, const
ComplexMatrix &b)

ComplexMatrix operator - (const ComplexDiagMatrix &a, const
ComplexMatrix &b)

ComplexMatrix operator * (const ComplexDiagMatrix &a, const
ComplexMatrix &b)

ComplexColumnVector diag (void) const
ComplexColumnVector diag (int k) const

29



Chapter 4: Matrix and Vector Operations

ostream& operator << (ostream &os, const ComplexDiagMatrix &a)

30



Chapter 5: Matrix Factorizations 31

5 Matrix Factorizations

(void)

(const Matrix &a, const char *balance_job)
(const AEPBALANCE &a)

AEPBALANCE& operator = (const AEPBALANCE &a)

Matrix balanced_matrix (void) const
Matrix balancing_matrix (void) const

ostream& operator << (ostream &os, const AEPBALANCE &a)

ComplexAEPBALANCE (void)

ComplexAEPBALANCE (const ComplexMatrix &a, const char
*balance_job)

ComplexAEPBALANCE (const ComplexAEPBALANCE &a)

ComplexAEPBALANCEZ operator = (const ComplexAEPBALANCE &a)

ComplexMatrix balanced_matrix (void) const
ComplexMatrix balancing_matrix (void) const

ostream& operator << (ostream &os, const ComplexAEPBALANCE &a)
(void)

(const DET &a)

DET& operator = (const DET &a)

int value_will_overflow (void) const
int value_will_underflow (void) const

double coefficient (void) const
int exponent (void) const
double value (void) const

ostream& operator << (ostream &os, const DET &a)
(void)

(const ComplexDET &a)

ComplexDET& operator = (const ComplexDET &a)

int value_will_overflow (void) const
int value_will_underflow (void) const

Complex coeflicient (void) const
int exponent (void) const
Complex value (void) const

ostream& operator << (ostream &os, const ComplexDET &a)
(void)

(const Matrix &a, const Matrix &, const char *balance_job)
(const GEPBALANCE &a)



Chapter 5: Matrix Factorizations 32

GEPBALANCE& operator = (const GEPBALANCE &a)

Matrix balanced_a_matrix (void) const
Matrix balanced_b_matrix (void) const
Matrix left_balancing_matrix (void) const
Matrix right_balancing_matrix (void) const

ostream& operator << (ostream &os, const GEPBALANCE &a)
(void)

(const Matrix &a)
(const Matrix &a, int &info)
(const CHOL &a)

CHOL&Z operator = (const CHOL &a)
Matrix chol_matrix (void) const

ostream& operator << (ostream &os, const CHOL &a)

(void)

const ComplexMatrix &a
p

const ComplexMatrix &a, int &info
p

const ComplexCHOL &a
p

ComplexCHOL& operator = (const ComplexCHOL &a)
ComplexMatrix chol_matrix (void) const

ostream& operator << (ostream &os, const ComplexCHOL &a)

(void)

(const Matrix &a)

(const Matrixg&a, int &info)
(const HESS &a)

HESS& operator = (const HESS &a)

Matrix hess_matrix (void) const
Matrix unitary_hess_matrix (void) const

ostream& operator << (ostream &os, const HESS &a)

(void)

const ComplexMatrix &a
p

const ComplexMatrix &a, int &info
p

const ComplexHESS &a
p

ComplexHESS& operator = (const ComplexHESS &a)

ComplexMatrix hess_matrix (void) const
ComplexMatrix unitary_hess_matrix (void) const

ostream& operator << (ostream &os, const ComplexHESS &a)
(void)
(const Matrix &a, const char *ord)

(const Matrix &a, const char *ord, int &info)
(const SCHUR &a, const char *ord)



Chapter 5: Matrix Factorizations 33

SCHUR& operator = (const SCHUR &a)

Matrix schur_matrix (void) const
Matrix unitary_matrix (void) const

ostream& operator << (ostream &os, const SCHUR &a)

(void)

(const ComplexMatrix &a, const char *ord)

(const ComplexMatrix &a, const char *ord, int &info)
(const ComplexSCHUR &a, const char *ord)

ComplexSCHUR& operator = (const ComplexSCHUR &a)

ComplexMatrix schur_matrix (void) const
ComplexMatrix unitary_matrix (void) const

ostream& operator << (ostream &os, const ComplexSCHUR &a)

(void)

(const Matrix &a)

(const Matrix &a, int &info)
(const SVD &a)

SVD& operator = (const SVD &a)

DiagMatrix singular_values (void) const
Matrix left_singular_matrix (void) const
Matrix right_singular_matrix (void) const

ostream& operator << (ostream &os, const SVD &a)

(void)

const ComplexMatrix &a
p

const ComplexMatrix &a, int &info
p

const ComplexSVD &a
p

ComplexSVD& operator = (const ComplexSVD &a)

DiagMatrix singular_values (void) const
ComplexMatrix left_singular_matrix (void) const
ComplexMatrix right_singular_matrix (void) const

ostream& operator << (ostream &os, const ComplexSVD &a)
(void)

(const Matrix &a)

(const Matrix &a, int &info)

(const ComplexMatrix &a)

(const ComplexMatrix &a, int &info)
(const EIG &a)

EIG& operator = (const EIG &a)
ComplexColumnVector eigenvalues (void) const

ComplexMatrix eigenvectors (void) const



Chapter 5: Matrix Factorizations 34

ostream& operator << (ostream &os, const EIG &a)

(void)
(const Matrix